Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{8}}{\sqrt{7}-\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{8}}{\sqrt{7}-\sqrt{5}}\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{14}+2\sqrt{10}}{7+\sqrt{35}-\sqrt{35}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{14}+2\sqrt{10}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{14}+\sqrt{10}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\sqrt{14}+\sqrt{10}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7} + \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{8} } \cdot \left( \sqrt{7} + \sqrt{5}\right) = \color{blue}{ \sqrt{8}} \cdot \sqrt{7}+\color{blue}{ \sqrt{8}} \cdot \sqrt{5} = \\ = 2 \sqrt{14} + 2 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{7}- \sqrt{5}\right) } \cdot \left( \sqrt{7} + \sqrt{5}\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot \sqrt{5}\color{blue}{- \sqrt{5}} \cdot \sqrt{7}\color{blue}{- \sqrt{5}} \cdot \sqrt{5} = \\ = 7 + \sqrt{35}- \sqrt{35}-5 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Remove 1 from denominator. |