Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{8}}{\sqrt{58}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{8}}{\sqrt{58}}\frac{\sqrt{58}}{\sqrt{58}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{29}}{58} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 4 \sqrt{ 29 } : \color{blue}{ 2 } } { 58 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{29}}{29}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{58}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{8} } \cdot \sqrt{58} = 4 \sqrt{29} $$ Simplify denominator. $$ \color{blue}{ \sqrt{58} } \cdot \sqrt{58} = 58 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |