Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{72}}{\sqrt{54}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{72}}{\sqrt{54}}\frac{\sqrt{54}}{\sqrt{54}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36\sqrt{3}}{54} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 36 \sqrt{ 3 } : \color{blue}{ 18 } } { 54 : \color{blue}{ 18 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{3}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{54}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{72} } \cdot \sqrt{54} = 36 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \sqrt{54} } \cdot \sqrt{54} = 54 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 18 } $. |