Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{70}}{\sqrt{86}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{70}}{\sqrt{86}}\frac{\sqrt{86}}{\sqrt{86}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{1505}}{86} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{1505}}{43}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{86}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{70} } \cdot \sqrt{86} = 2 \sqrt{1505} $$ Simplify denominator. $$ \color{blue}{ \sqrt{86} } \cdot \sqrt{86} = 86 $$ |
③ | Divide both numerator and denominator by 2. |