Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{7}}{\sqrt{6}+\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{7}}{\sqrt{6}+\sqrt{8}}\frac{\sqrt{6}-\sqrt{8}}{\sqrt{6}-\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{42}-2\sqrt{14}}{6-4\sqrt{3}+4\sqrt{3}-8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{42}-2\sqrt{14}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-\sqrt{42}+2\sqrt{14}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}- \sqrt{8}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{7} } \cdot \left( \sqrt{6}- \sqrt{8}\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{6}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{8} = \\ = \sqrt{42}- 2 \sqrt{14} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{6} + \sqrt{8}\right) } \cdot \left( \sqrt{6}- \sqrt{8}\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{8}+\color{blue}{ \sqrt{8}} \cdot \sqrt{6}+\color{blue}{ \sqrt{8}} \cdot- \sqrt{8} = \\ = 6- 4 \sqrt{3} + 4 \sqrt{3}-8 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |