Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{7}}{4-\sqrt{14}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{7}}{4-\sqrt{14}}\frac{4+\sqrt{14}}{4+\sqrt{14}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{7}+7\sqrt{2}}{16+4\sqrt{14}-4\sqrt{14}-14} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{7}+7\sqrt{2}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4 + \sqrt{14}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{7} } \cdot \left( 4 + \sqrt{14}\right) = \color{blue}{ \sqrt{7}} \cdot4+\color{blue}{ \sqrt{7}} \cdot \sqrt{14} = \\ = 4 \sqrt{7} + 7 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( 4- \sqrt{14}\right) } \cdot \left( 4 + \sqrt{14}\right) = \color{blue}{4} \cdot4+\color{blue}{4} \cdot \sqrt{14}\color{blue}{- \sqrt{14}} \cdot4\color{blue}{- \sqrt{14}} \cdot \sqrt{14} = \\ = 16 + 4 \sqrt{14}- 4 \sqrt{14}-14 $$ |
③ | Simplify numerator and denominator |