Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{5}}{2\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{5}}{2\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 10 : \color{orangered}{ 10 } }{ 10 : \color{orangered}{ 10 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}1\end{aligned} $$ | |
① | Simplify numerator and denominator |
② | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
③ | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{5} } \cdot \sqrt{5} = 10 $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{5} } \cdot \sqrt{5} = 10 $$ |
④ | Divide both the top and bottom numbers by $ \color{orangered}{ 10 } $. |
⑤ | Remove 1 from denominator. |