Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{55}}{\sqrt{35}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{55}}{\sqrt{35}}\frac{\sqrt{35}}{\sqrt{35}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{77}}{35} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{77}}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{35}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{55} } \cdot \sqrt{35} = 5 \sqrt{77} $$ Simplify denominator. $$ \color{blue}{ \sqrt{35} } \cdot \sqrt{35} = 35 $$ |
③ | Divide both numerator and denominator by 5. |