Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{50}-14}{\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{50}-14}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10-14\sqrt{2}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5-7\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}5-7\sqrt{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{50}-14\right) } \cdot \sqrt{2} = \color{blue}{ \sqrt{50}} \cdot \sqrt{2}\color{blue}{-14} \cdot \sqrt{2} = \\ = 10- 14 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{2} } \cdot \sqrt{2} = 2 $$ |
③ | Divide both numerator and denominator by 2. |
④ | Remove 1 from denominator. |