Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{80}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{80}}\frac{\sqrt{80}}{\sqrt{80}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20}{80} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 20 : \color{orangered}{ 20 } }{ 80 : \color{orangered}{ 20 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{4}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{80}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \sqrt{80} = 20 $$ Simplify denominator. $$ \color{blue}{ \sqrt{80} } \cdot \sqrt{80} = 80 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 20 } $. |