Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{6}-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{6}-2}\frac{\sqrt{6}+2}{\sqrt{6}+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{30}+2\sqrt{5}}{6+2\sqrt{6}-2\sqrt{6}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{30}+2\sqrt{5}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6} + 2} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \left( \sqrt{6} + 2\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{6}+\color{blue}{ \sqrt{5}} \cdot2 = \\ = \sqrt{30} + 2 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{6}-2\right) } \cdot \left( \sqrt{6} + 2\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot2\color{blue}{-2} \cdot \sqrt{6}\color{blue}{-2} \cdot2 = \\ = 6 + 2 \sqrt{6}- 2 \sqrt{6}-4 $$ |
③ | Simplify numerator and denominator |