Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{5}\cdot41}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{5}\cdot41}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5}{205} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 5 : \color{orangered}{ 5 } }{ 205 : \color{orangered}{ 5 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{41}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \sqrt{5} = 5 $$ Simplify denominator. $$ \color{blue}{ 41 \sqrt{5} } \cdot \sqrt{5} = 205 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |