Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{28}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{28}}\frac{\sqrt{28}}{\sqrt{28}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{35}}{28} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{35}}{14}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{28}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \sqrt{28} = 2 \sqrt{35} $$ Simplify denominator. $$ \color{blue}{ \sqrt{28} } \cdot \sqrt{28} = 28 $$ |
③ | Divide both numerator and denominator by 2. |