Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{2-\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{2-\sqrt{2}}\frac{2+\sqrt{2}}{2+\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{5}+\sqrt{10}}{4+2\sqrt{2}-2\sqrt{2}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{5}+\sqrt{10}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 + \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \left( 2 + \sqrt{2}\right) = \color{blue}{ \sqrt{5}} \cdot2+\color{blue}{ \sqrt{5}} \cdot \sqrt{2} = \\ = 2 \sqrt{5} + \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( 2- \sqrt{2}\right) } \cdot \left( 2 + \sqrt{2}\right) = \color{blue}{2} \cdot2+\color{blue}{2} \cdot \sqrt{2}\color{blue}{- \sqrt{2}} \cdot2\color{blue}{- \sqrt{2}} \cdot \sqrt{2} = \\ = 4 + 2 \sqrt{2}- 2 \sqrt{2}-2 $$ |
③ | Simplify numerator and denominator |