Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{5}}{-\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{-\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5}{-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{5}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}- \, \frac{ 5 : \color{orangered}{ 5 } }{ 5 : \color{orangered}{ 5 }} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-1\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \sqrt{5} = 5 $$ Simplify denominator. $$ \color{blue}{ - \sqrt{5} } \cdot \sqrt{5} = -5 $$ |
③ | Place minus sign in front of the fraction. |
④ | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |
⑤ | Remove 1 from denominator. |