Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{4}}{\sqrt{25}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{4}}{\sqrt{25}}\frac{\sqrt{25}}{\sqrt{25}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10}{25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 10 : \color{orangered}{ 5 } }{ 25 : \color{orangered}{ 5 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{25}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{4} } \cdot \sqrt{25} = 10 $$ Simplify denominator. $$ \color{blue}{ \sqrt{25} } \cdot \sqrt{25} = 25 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |