Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{4}}{3\sqrt{16}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{4}}{3\sqrt{16}}\frac{\sqrt{16}}{\sqrt{16}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8}{48} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 8 : \color{orangered}{ 8 } }{ 48 : \color{orangered}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{16}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{4} } \cdot \sqrt{16} = 8 $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{16} } \cdot \sqrt{16} = 48 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 8 } $. |