Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{35}}{\sqrt{175}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{35}}{\sqrt{175}}\frac{\sqrt{175}}{\sqrt{175}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{35\sqrt{5}}{175} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{5}}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{175}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{35} } \cdot \sqrt{175} = 35 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \sqrt{175} } \cdot \sqrt{175} = 175 $$ |
③ | Divide both numerator and denominator by 35. |