Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{33}}{\sqrt{22}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{33}}{\sqrt{22}}\frac{\sqrt{22}}{\sqrt{22}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{11\sqrt{6}}{22} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{6}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{22}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{33} } \cdot \sqrt{22} = 11 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{22} } \cdot \sqrt{22} = 22 $$ |
③ | Divide both numerator and denominator by 11. |