Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{32}}{\sqrt{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{32}}{\sqrt{18}}\frac{\sqrt{18}}{\sqrt{18}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 24 : \color{orangered}{ 6 } }{ 18 : \color{orangered}{ 6 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{18}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{32} } \cdot \sqrt{18} = 24 $$ Simplify denominator. $$ \color{blue}{ \sqrt{18} } \cdot \sqrt{18} = 18 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 6 } $. |