Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{30}}{\sqrt{95}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{30}}{\sqrt{95}}\frac{\sqrt{95}}{\sqrt{95}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{114}}{95} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{114}}{19}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{95}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{30} } \cdot \sqrt{95} = 5 \sqrt{114} $$ Simplify denominator. $$ \color{blue}{ \sqrt{95} } \cdot \sqrt{95} = 95 $$ |
③ | Divide both numerator and denominator by 5. |