Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}-\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3-\sqrt{21}-\sqrt{21}+7}{3-\sqrt{21}+\sqrt{21}-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10-2\sqrt{21}}{-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{5-\sqrt{21}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-5+\sqrt{21}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}- \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{3}- \sqrt{7}\right) } \cdot \left( \sqrt{3}- \sqrt{7}\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{7}\color{blue}{- \sqrt{7}} \cdot \sqrt{3}\color{blue}{- \sqrt{7}} \cdot- \sqrt{7} = \\ = 3- \sqrt{21}- \sqrt{21} + 7 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{3} + \sqrt{7}\right) } \cdot \left( \sqrt{3}- \sqrt{7}\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot \sqrt{3}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{7} = \\ = 3- \sqrt{21} + \sqrt{21}-7 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Multiply both numerator and denominator by -1. |