Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2+\sqrt{6}+\sqrt{6}+3}{2+\sqrt{6}-\sqrt{6}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5+2\sqrt{6}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{5+2\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(5+2\sqrt{6}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-5-2\sqrt{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2} + \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{2} + \sqrt{3}\right) } \cdot \left( \sqrt{2} + \sqrt{3}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot \sqrt{2}+\color{blue}{ \sqrt{3}} \cdot \sqrt{3} = \\ = 2 + \sqrt{6} + \sqrt{6} + 3 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2}- \sqrt{3}\right) } \cdot \left( \sqrt{2} + \sqrt{3}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{3}\color{blue}{- \sqrt{3}} \cdot \sqrt{2}\color{blue}{- \sqrt{3}} \cdot \sqrt{3} = \\ = 2 + \sqrt{6}- \sqrt{6}-3 $$ |
③ | Simplify numerator and denominator |
④ | Place a negative sign in front of a fraction. |
⑤ | Remove the parenthesis by changing the sign of each term within them. |