Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{22}}{\sqrt{1640}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{22}}{\sqrt{1640}}\frac{\sqrt{1640}}{\sqrt{1640}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{2255}}{1640} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2255}}{410}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{1640}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{22} } \cdot \sqrt{1640} = 4 \sqrt{2255} $$ Simplify denominator. $$ \color{blue}{ \sqrt{1640} } \cdot \sqrt{1640} = 1640 $$ |
③ | Divide both numerator and denominator by 4. |