Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{21}\cdot\sqrt{63}}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\sqrt{1323} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}} \sqrt{ 441 \cdot 3 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \sqrt{ 441 } \cdot \sqrt{ 3 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}21\sqrt{3}\end{aligned} $$ | |
① | Remove 1 from denominator. |
② | Factor out the largest perfect square of 1323. ( in this example we factored out $ 441 $ ) |
③ | Rewrite $ \sqrt{ 441 \cdot 3 } $ as the product of two radicals. |
④ | The square root of $ 441 $ is $ 21 $. |