Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{2}^2}{\sqrt{2}^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 2 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}1\end{aligned} $$ | |
① | $$ \sqrt{2}^2 =
\sqrt{2} ^2 =
\lvert 2 \rvert =
2 $$ |
② | $$ \sqrt{2}^2 =
\sqrt{2} ^2 =
\lvert 2 \rvert =
2 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
④ | Remove 1 from denominator. |