Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{19}}{2\sqrt{19}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{19}}{2\sqrt{19}}\frac{\sqrt{19}}{\sqrt{19}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{19}{38} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 19 : \color{orangered}{ 19 } }{ 38 : \color{orangered}{ 19 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{19}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{19} } \cdot \sqrt{19} = 19 $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{19} } \cdot \sqrt{19} = 38 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 19 } $. |