Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{18}}{\sqrt{42}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{18}}{\sqrt{42}}\frac{\sqrt{42}}{\sqrt{42}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{21}}{42} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{21}}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{42}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{18} } \cdot \sqrt{42} = 6 \sqrt{21} $$ Simplify denominator. $$ \color{blue}{ \sqrt{42} } \cdot \sqrt{42} = 42 $$ |
③ | Divide both numerator and denominator by 6. |