Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{17}}{\sqrt{64}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{17}}{\sqrt{64}}\frac{\sqrt{64}}{\sqrt{64}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{17}}{64} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{17}}{8}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{64}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{17} } \cdot \sqrt{64} = 8 \sqrt{17} $$ Simplify denominator. $$ \color{blue}{ \sqrt{64} } \cdot \sqrt{64} = 64 $$ |
③ | Divide both numerator and denominator by 8. |