Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{144}}{\sqrt{225}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{144}}{\sqrt{225}}\frac{\sqrt{225}}{\sqrt{225}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{180}{225} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 180 : \color{orangered}{ 45 } }{ 225 : \color{orangered}{ 45 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{225}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{144} } \cdot \sqrt{225} = 180 $$ Simplify denominator. $$ \color{blue}{ \sqrt{225} } \cdot \sqrt{225} = 225 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 45 } $. |