Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{13}-\sqrt{7}}{\sqrt{13}+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{13}-\sqrt{7}}{\sqrt{13}+\sqrt{7}}\frac{\sqrt{13}-\sqrt{7}}{\sqrt{13}-\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{13-\sqrt{91}-\sqrt{91}+7}{13-\sqrt{91}+\sqrt{91}-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{20-2\sqrt{91}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{10-\sqrt{91}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{13}- \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{13}- \sqrt{7}\right) } \cdot \left( \sqrt{13}- \sqrt{7}\right) = \color{blue}{ \sqrt{13}} \cdot \sqrt{13}+\color{blue}{ \sqrt{13}} \cdot- \sqrt{7}\color{blue}{- \sqrt{7}} \cdot \sqrt{13}\color{blue}{- \sqrt{7}} \cdot- \sqrt{7} = \\ = 13- \sqrt{91}- \sqrt{91} + 7 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{13} + \sqrt{7}\right) } \cdot \left( \sqrt{13}- \sqrt{7}\right) = \color{blue}{ \sqrt{13}} \cdot \sqrt{13}+\color{blue}{ \sqrt{13}} \cdot- \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot \sqrt{13}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{7} = \\ = 13- \sqrt{91} + \sqrt{91}-7 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |