Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{12}}{\sqrt{72}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{12}}{\sqrt{72}}\frac{\sqrt{72}}{\sqrt{72}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{6}}{72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{6}}{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{72}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{12} } \cdot \sqrt{72} = 12 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{72} } \cdot \sqrt{72} = 72 $$ |
③ | Divide both numerator and denominator by 12. |