Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{12}}{\sqrt{27}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{12}}{\sqrt{27}}\frac{\sqrt{27}}{\sqrt{27}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18}{27} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 18 : \color{orangered}{ 9 } }{ 27 : \color{orangered}{ 9 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{27}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{12} } \cdot \sqrt{27} = 18 $$ Simplify denominator. $$ \color{blue}{ \sqrt{27} } \cdot \sqrt{27} = 27 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 9 } $. |