Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}-\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{11-\sqrt{77}-\sqrt{77}+7}{11-\sqrt{77}+\sqrt{77}-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{18-2\sqrt{77}}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{9-\sqrt{77}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{11}- \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{11}- \sqrt{7}\right) } \cdot \left( \sqrt{11}- \sqrt{7}\right) = \color{blue}{ \sqrt{11}} \cdot \sqrt{11}+\color{blue}{ \sqrt{11}} \cdot- \sqrt{7}\color{blue}{- \sqrt{7}} \cdot \sqrt{11}\color{blue}{- \sqrt{7}} \cdot- \sqrt{7} = \\ = 11- \sqrt{77}- \sqrt{77} + 7 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{11} + \sqrt{7}\right) } \cdot \left( \sqrt{11}- \sqrt{7}\right) = \color{blue}{ \sqrt{11}} \cdot \sqrt{11}+\color{blue}{ \sqrt{11}} \cdot- \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot \sqrt{11}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{7} = \\ = 11- \sqrt{77} + \sqrt{77}-7 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |