Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{9\sqrt{185}}{3\sqrt{46}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9\sqrt{185}}{3\sqrt{46}}\frac{\sqrt{46}}{\sqrt{46}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9\sqrt{8510}}{138} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 9 \sqrt{ 8510 } : \color{blue}{ 3 } } { 138 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{8510}}{46}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{46}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 9 \sqrt{185} } \cdot \sqrt{46} = 9 \sqrt{8510} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{46} } \cdot \sqrt{46} = 138 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |