Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{8}{\sqrt{89}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 8 }{\sqrt{ 89 }} \times \frac{ \color{orangered}{\sqrt{ 89 }} }{ \color{orangered}{\sqrt{ 89 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{89}}{89}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 89 }}$. |
② | In denominator we have $ \sqrt{ 89 } \cdot \sqrt{ 89 } = 89 $. |