Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{8}{9-\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8}{9-\sqrt{2}}\frac{9+\sqrt{2}}{9+\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{72+8\sqrt{2}}{81+9\sqrt{2}-9\sqrt{2}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{72+8\sqrt{2}}{79}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 9 + \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 8 } \cdot \left( 9 + \sqrt{2}\right) = \color{blue}{8} \cdot9+\color{blue}{8} \cdot \sqrt{2} = \\ = 72 + 8 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( 9- \sqrt{2}\right) } \cdot \left( 9 + \sqrt{2}\right) = \color{blue}{9} \cdot9+\color{blue}{9} \cdot \sqrt{2}\color{blue}{- \sqrt{2}} \cdot9\color{blue}{- \sqrt{2}} \cdot \sqrt{2} = \\ = 81 + 9 \sqrt{2}- 9 \sqrt{2}-2 $$ |
③ | Simplify numerator and denominator |