Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7\sqrt{5}}{6\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7\sqrt{5}}{6\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{35}{30} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 35 : \color{orangered}{ 5 } }{ 30 : \color{orangered}{ 5 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7}{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 7 \sqrt{5} } \cdot \sqrt{5} = 35 $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{5} } \cdot \sqrt{5} = 30 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |