Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7\sqrt{27}}{\sqrt{45}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7\sqrt{27}}{\sqrt{45}}\frac{\sqrt{45}}{\sqrt{45}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{63\sqrt{15}}{45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 63 \sqrt{ 15 } : \color{blue}{ 9 } } { 45 : \color{blue}{ 9 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{15}}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{45}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 7 \sqrt{27} } \cdot \sqrt{45} = 63 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ \sqrt{45} } \cdot \sqrt{45} = 45 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 9 } $. |