Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{700\sqrt{77}}{179\sqrt{77}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{700\sqrt{77}}{179\sqrt{77}}\frac{\sqrt{77}}{\sqrt{77}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{53900}{13783} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 53900 : \color{orangered}{ 77 } }{ 13783 : \color{orangered}{ 77 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{700}{179}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{77}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 700 \sqrt{77} } \cdot \sqrt{77} = 53900 $$ Simplify denominator. $$ \color{blue}{ 179 \sqrt{77} } \cdot \sqrt{77} = 13783 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 77 } $. |