Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7-2\sqrt{3}}{\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7-2\sqrt{3}}{\sqrt{10}}\frac{\sqrt{10}}{\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7\sqrt{10}-2\sqrt{30}}{10}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{10}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 7- 2 \sqrt{3}\right) } \cdot \sqrt{10} = \color{blue}{7} \cdot \sqrt{10}\color{blue}{- 2 \sqrt{3}} \cdot \sqrt{10} = \\ = 7 \sqrt{10}- 2 \sqrt{30} $$ Simplify denominator. $$ \color{blue}{ \sqrt{10} } \cdot \sqrt{10} = 10 $$ |