Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7+3\sqrt{5}}{7-3\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7+3\sqrt{5}}{7-3\sqrt{5}}\frac{7+3\sqrt{5}}{7+3\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{49+21\sqrt{5}+21\sqrt{5}+45}{49+21\sqrt{5}-21\sqrt{5}-45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{94+42\sqrt{5}}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{47+21\sqrt{5}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 7 + 3 \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 7 + 3 \sqrt{5}\right) } \cdot \left( 7 + 3 \sqrt{5}\right) = \color{blue}{7} \cdot7+\color{blue}{7} \cdot 3 \sqrt{5}+\color{blue}{ 3 \sqrt{5}} \cdot7+\color{blue}{ 3 \sqrt{5}} \cdot 3 \sqrt{5} = \\ = 49 + 21 \sqrt{5} + 21 \sqrt{5} + 45 $$ Simplify denominator. $$ \color{blue}{ \left( 7- 3 \sqrt{5}\right) } \cdot \left( 7 + 3 \sqrt{5}\right) = \color{blue}{7} \cdot7+\color{blue}{7} \cdot 3 \sqrt{5}\color{blue}{- 3 \sqrt{5}} \cdot7\color{blue}{- 3 \sqrt{5}} \cdot 3 \sqrt{5} = \\ = 49 + 21 \sqrt{5}- 21 \sqrt{5}-45 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |