Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7}{\sqrt{56}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 7 }{\sqrt{ 56 }} \times \frac{ \color{orangered}{\sqrt{ 56 }} }{ \color{orangered}{\sqrt{ 56 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7\sqrt{56}}{56} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 7 \sqrt{ 4 \cdot 14 }}{ 56 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 7 \cdot 2 \sqrt{ 14 } }{ 56 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{14\sqrt{14}}{56} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 14 \sqrt{ 14 } : \color{blue}{ 14 } }{ 56 : \color{blue}{ 14 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{14}}{4}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 56 }}$. |
② | In denominator we have $ \sqrt{ 56 } \cdot \sqrt{ 56 } = 56 $. |
③ | Simplify $ \sqrt{ 56 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 14 }$. |