Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7}{\sqrt{245}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 7 }{\sqrt{ 245 }} \times \frac{ \color{orangered}{\sqrt{ 245 }} }{ \color{orangered}{\sqrt{ 245 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7\sqrt{245}}{245} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 7 \sqrt{ 49 \cdot 5 }}{ 245 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 7 \cdot 7 \sqrt{ 5 } }{ 245 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{49\sqrt{5}}{245} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 49 \sqrt{ 5 } : \color{blue}{ 49 } }{ 245 : \color{blue}{ 49 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{5}}{5}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 245 }}$. |
② | In denominator we have $ \sqrt{ 245 } \cdot \sqrt{ 245 } = 245 $. |
③ | Simplify $ \sqrt{ 245 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 49 }$. |