Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7}{6\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7}{6\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14\sqrt{2}}{48} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 14 \sqrt{ 2 } : \color{blue}{ 2 } } { 48 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{2}}{24}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 7 } \cdot \sqrt{8} = 14 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{8} } \cdot \sqrt{8} = 48 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |