Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7}{2+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7}{2+\sqrt{7}}\frac{2-\sqrt{7}}{2-\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14-7\sqrt{7}}{4-2\sqrt{7}+2\sqrt{7}-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{14-7\sqrt{7}}{-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-14+7\sqrt{7}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2- \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 7 } \cdot \left( 2- \sqrt{7}\right) = \color{blue}{7} \cdot2+\color{blue}{7} \cdot- \sqrt{7} = \\ = 14- 7 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ \left( 2 + \sqrt{7}\right) } \cdot \left( 2- \sqrt{7}\right) = \color{blue}{2} \cdot2+\color{blue}{2} \cdot- \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot2+\color{blue}{ \sqrt{7}} \cdot- \sqrt{7} = \\ = 4- 2 \sqrt{7} + 2 \sqrt{7}-7 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |