Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6\sqrt{8}}{7\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6\sqrt{8}}{7\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{6}}{21} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 6 } : \color{blue}{ 3 } } { 21 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{6}}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 6 \sqrt{8} } \cdot \sqrt{3} = 12 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 7 \sqrt{3} } \cdot \sqrt{3} = 21 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |