Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6+5\sqrt{7}}{\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6+5\sqrt{7}}{\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{7}+35}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 6 + 5 \sqrt{7}\right) } \cdot \sqrt{7} = \color{blue}{6} \cdot \sqrt{7}+\color{blue}{ 5 \sqrt{7}} \cdot \sqrt{7} = \\ = 6 \sqrt{7} + 35 $$ Simplify denominator. $$ \color{blue}{ \sqrt{7} } \cdot \sqrt{7} = 7 $$ |