Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6}{\sqrt{20}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 6 }{\sqrt{ 20 }} \times \frac{ \color{orangered}{\sqrt{ 20 }} }{ \color{orangered}{\sqrt{ 20 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{20}}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 6 \sqrt{ 4 \cdot 5 }}{ 20 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 6 \cdot 2 \sqrt{ 5 } }{ 20 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{12\sqrt{5}}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 12 \sqrt{ 5 } : \color{blue}{ 4 } }{ 20 : \color{blue}{ 4 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{5}}{5}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 20 }}$. |
② | In denominator we have $ \sqrt{ 20 } \cdot \sqrt{ 20 } = 20 $. |
③ | Simplify $ \sqrt{ 20 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 4 }$. |