Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6}{5\sqrt{32}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6}{5\sqrt{32}}\frac{\sqrt{32}}{\sqrt{32}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24\sqrt{2}}{160} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 24 \sqrt{ 2 } : \color{blue}{ 8 } } { 160 : \color{blue}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{2}}{20}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{32}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 6 } \cdot \sqrt{32} = 24 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{32} } \cdot \sqrt{32} = 160 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 8 } $. |